Markscheme

May 2018

Mathematics

Standard level

Paper 1

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for a valid Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

R Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

1 General
Mark according to RM assessor instructions.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is generally not possible to award MO followed by A1, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any. An exception to this rule is when work for $\boldsymbol{M} 1$ is missing, as opposed to incorrect (see point 4).
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M 1}$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where there are two or more A marks on the same line, they may be awarded independently; so if the first value is incorrect, but the next two are correct, award A0A1A1.
- Where the markscheme specifies (M2), N3, etc., do not split the marks, unless there is a note.
- Most \boldsymbol{M} marks are for a valid method, ie a method which can lead to the answer: it must indicate some form of progress towards the answer.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award final A1.

N marks

If no working shown, award \mathbf{N} marks for correct answers - this includes acceptable answers (see accuracy booklet). In this case, ignore mark breakdown (M, A, R). Where a student only shows a final incorrect answer with no working, even if that answer is a correct intermediate answer, award NO.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.
- There may not be a direct relationship between the \boldsymbol{N} marks and the implied marks. There are times when all the marks are implied, but the \boldsymbol{N} marks are not the full marks: this indicates that we want to see some of the working, without specifying what.
- For consistency within the markscheme, \boldsymbol{N} marks are noted for every part, even when these match the mark breakdown.
- If a candidate has incorrect working, which somehow results in a correct answer, do not award the \boldsymbol{N} marks for this correct answer. However, if the candidate has indicated (usually by crossing out) that the working is to be ignored, award the \boldsymbol{N} marks for the correct answer.

Implied and must be seen marks

Implied marks appear in brackets eg (M1).

- Implied marks can only be awarded if the work is seen or if implied in subsequent working (a correct final answer does not necessarily mean that the implied marks are all awarded). There are questions where some working is required, but as it is accepted that not everyone will write the same steps, all the marks are implied, but the \boldsymbol{N} marks are not the full marks for the question.
- Normally the correct work is seen in the next line.
- Where there is an (M1) followed by $\boldsymbol{A 1}$ for each correct answer, if no working shown, one correct answer is sufficient evidence to award the (M1).

Must be seen marks appear without brackets eg M1.

- Must be seen marks can only be awarded if the work is seen.
- If a must be seen mark is not awarded because work is missing (as opposed to MO or AO for incorrect work) all subsequent marks may be awarded if appropriate.

5 Follow through marks (only applied after an error is made)

Follow through (FT) marks are awarded where an incorrect answer (final or intermediate) from one part of a question is used correctly in subsequent part(s) or subpart(s). Usually, to award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part. However, if the only marks awarded in a subpart are for the final answer, then FT marks should be awarded if appropriate. Examiners are expected to check student work in order to award FT marks where appropriate.

- Within a question part, once an error is made, no further \boldsymbol{A} marks can be awarded for work which uses the error, but \boldsymbol{M} and \boldsymbol{R} marks may be awarded if appropriate. (However, as noted above, if an \boldsymbol{A} mark is not awarded because work is missing, all subsequent marks may be awarded if appropriate).
- Exceptions to this rule will be explicitly noted on the markscheme.
- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- The markscheme may use the word "their" in a description, to indicate that candidates may be using an incorrect value.
- If a candidate makes an error in one part, but gets the correct answer(s) to subsequent part(s), award marks as appropriate, unless the question says hence. It is often possible to use a different approach in subsequent parts that does not depend on the answer to previous parts.
- In a "show that" question, if an error in a previous subpart leads to not showing the required answer, do not award the final $\boldsymbol{A 1}$. Note that if the error occurs within the same subpart, the FT rules may result in further loss of marks.

Mis-read

If a candidate incorrectly copies information from the question, this is a mis-read (MR). A candidate should be penalized only once for a particular mis-read. Use the MR stamp to indicate that this is a misread. Do not award the first mark in the question, even if this is an M mark, but award all others (if appropriate) so that the candidate only loses one mark for the misread.

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (eg probability greater than 1 , use of $r>1$ for the sum of an infinite GP, $\sin \theta=1.5$, non-integer value where integer required), do not award the mark(s) for the final answer(s).
- Miscopying of candidates' own work does not constitute a misread, it is an error.

7 Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete parts are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for parts of questions are indicated by EITHER . . . OR. Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

9 Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

10 Calculators

No calculator is allowed. The use of any calculator on paper 1 is malpractice, and will result in no grade awarded. If you see work that suggests a candidate has used any calculator, please follow the procedures for malpractice. Examples: finding an angle, given a trig ratio of 0.4235 .

Style

The markscheme aims to present answers using good communication, eg if the question asks to find the value of k, the markscheme will say $k=3$, but the marks will be for the correct value 3 there is usually no need for the " $k=$ ". In these cases, it is also usually acceptable to have another variable, as long as there is no ambiguity in the question, eg if the question asks to find the value of p and of q, then the student answer needs to be clear. Generally, the only situation
where the full answer is required is in a question which asks for equations - in this case the markscheme will say "must be an equation".

The markscheme often uses words to describe what the marks are for, followed by examples, using the eg notation. These examples are not exhaustive, and examiners should check what candidates have written, to see if they satisfy the description. Where these marks are M marks, the examples may include ones using poor notation, to indicate what is acceptable. A valid method is one which will allow candidate to proceed to the next step eg if a quadratic function is given in factorised form, and the question asks for the zeroes, then multiplying the factors does not necessarily help to find the zeros, and would not on its own count as a valid method.

Candidate work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

Candidates are meant to write their answers to Section A on the question paper (QP), and Section B on answer booklets. Sometimes, they need more room for Section A, and use the booklet (and often comment to this effect on the QP), or write outside the box. That is fine, and this work should be marked.

The instructions tell candidates not to write on Section B of the QP. Thus they may well have done some rough work here which they assume will be ignored. If they have solutions on the answer booklets, there is no need to look at the QP. However, if there are whole questions or whole part solutions missing on answer booklets, please check to make sure that they are not on the QP, and if they are, mark those whole questions or whole part solutions that have not been written on answer booklets.

13. Diagrams

The notes on how to allocate marks for sketches usually refer to passing through particular points or having certain features. These marks can only be awarded if the sketch is approximately the correct shape. All values given will be an approximate guide to where these points/features occur. In some questions, the first $\boldsymbol{A 1}$ is for the shape, in others, the marks are only for the points and/or features. In both cases, unless the shape is approximately correct, no marks can be awarded (unless otherwise stated). However, if the graph is based on previous calculations, FT marks should be awarded if appropriate.

14. Accuracy of Answers

If the level of accuracy is specified in the question, a mark will be allocated for giving the final answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures.

Do not accept unfinished numerical final answers such as $3 / 0.1$ (unless otherwise stated). As a rule, numerical answers with more than one part (such as fractions) should be given using integers (eg 6/8). Calculations which lead to integers should be completed, with the exception of fractions which are not whole numbers. Intermediate values do not need to be given to the correct three significant figures. But, if candidates work with rounded values, this could lead to an incorrect answer, in which case award AO for the final answer. Where numerical answers are required as the final answer to a part of a question in the markscheme, the markscheme will show
a truncated 6 sf value
the exact value if applicable, the correct 3 sf answer
Units will appear in brackets at the end.

Section A

1. (a) any correct equation in the form $\boldsymbol{r}=\boldsymbol{a}+t \boldsymbol{b} \quad$ (accept any parameter for $t)$
where \boldsymbol{a} is $\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)$, and \boldsymbol{b} is a scalar multiple of $\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)$
eg $\quad \boldsymbol{r}=\left(\begin{array}{l}2 \\ 1 \\ 3\end{array}\right)+t\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right), \boldsymbol{r}=2 \boldsymbol{i}+\boldsymbol{j}+3 \boldsymbol{k}+s(\boldsymbol{i}+3 \boldsymbol{j}+\boldsymbol{k})$
(b) METHOD 1
correct scalar product
eg $\quad(1 \times 2)+(3 \times p)+(1 \times 0), 2+3 p$
evidence of equating their scalar product to zero
eg $\boldsymbol{a} \cdot \boldsymbol{b}=0,2+3 p=0,3 p=-2$
$p=-\frac{2}{3}$
A1
N3

METHOD 2

valid attempt to find angle between vectors
correct substitution into numerator and/or angle
eg $\cos \theta=\frac{(1 \times 2)+(3 \times p)+(1 \times 0)}{|a||b|}, \cos \theta=0$
$p=-\frac{2}{3}$
2. (a) $2 x^{3}-\frac{3 x^{2}}{2}+c\left(\right.$ accept $\left.\frac{6 x^{3}}{3}-\frac{3 x^{2}}{2}+c\right)$

A1A1
N2

Notes: Award A1AO for both correct terms if $+c$ is omitted.
Award A1AO for one correct term eg $2 x^{3}+c$.
Award A1AO if both terms are correct, but candidate attempts further working to solve for c.
(b) substitution of limits or function
eg $\int_{1}^{2} f(x) \mathrm{d} x,\left[2 x^{3}-\frac{3 x^{2}}{2}\right]_{1}^{2}$
substituting limits into their integrated function and subtracting
eg $\frac{6 \times 2^{3}}{3}-\frac{3 \times 2^{2}}{2}-\left(\frac{6 \times 1^{3}}{3}-\frac{3 \times 1^{2}}{2}\right)$
Note: Award $\mathbf{M 0}$ if substituted into original function.
correct working
eg $\frac{6 \times 8}{3}-\frac{3 \times 4}{2}-\frac{6 \times 1}{3}+\frac{3 \times 1}{2},(16-6)-\left(2-\frac{3}{2}\right)$
$\frac{19}{2}$
A1
N3
[4 marks]
[Total: 6 marks]
3. (a) correct approach
eg $\quad \frac{800}{n}=20$
40
(b) (i) 200 A1 N1
(ii) METHOD 1
recognizing variance $=\sigma^{2}$
eg $3^{2}=9$
correct working to find new variance
eg $\sigma^{2} \times 10^{2}, 9 \times 100$
900
A1
METHOD 2
new standard deviation is 30
recognizing variance $=\sigma^{2}$
eg $3^{2}=9,30^{2}$
900
4. evidence of correctly substituting into circle formula (may be seen later)

A1A1
eg $\quad \frac{1}{2} \theta r^{2}=12, r \theta=6$
attempt to eliminate one variable
eg $\quad r=\frac{6}{\theta}, \theta=\frac{l}{r}, \frac{\frac{1}{2} \theta r^{2}}{r \theta}=\frac{12}{6}$
correct elimination
eg $\frac{1}{2} \times \frac{6}{r} \times r^{2}=12, \frac{1}{2} \theta \times\left(\frac{6}{\theta}\right)^{2}=12, A=\frac{1}{2} \times r^{2} \times \frac{l}{r}, \frac{r^{2}}{2 r}=2$
correct equation
eg $\frac{1}{2} \times 6 r=12, \frac{1}{2} \times \frac{36}{\theta}=12,12=\frac{1}{2} \times r^{2} \times \frac{6}{r}$
correct working
eg $\quad 3 r=12, \frac{18}{\theta}=12, \frac{r}{2}=2,24=6 r$
$r=4(\mathrm{~cm})$
5. (a)

(b) recognizing horizontal shift/translation of 1 unit eg $\quad b=1$, moved 1 right
recognizing vertical stretch/dilation with scale factor 2
(M1)
eg $\quad a=2, y \times(-2)$
$a=-2, b=-1$
A1A1 N2N2
[4 marks]
[Total: 6 marks]

6. METHOD 1

evidence of discriminant
correct substitution into discriminant
eg $\quad q^{2}-4 p(-4 p)$
correct discriminant A1
eg $q^{2}+16 p^{2}$
$16 p^{2}>0 \quad$ (accept $\left.p^{2}>0\right) \quad$ A1
$q^{2} \geq 0 \quad$ (do not accept $\left.q^{2}>0\right) \quad$ A1
$q^{2}+16 p^{2}>0 \quad \boldsymbol{A 1}$
f has 2 roots A1

METHOD 2

y-intercept $=-4 p \quad($ seen anywhere $) \quad$ A1
if p is positive, then the y-intercept will be negative A1
an upward-opening parabola with a negative y-intercept \quad R1
eg sketch that must indicate $p>0$.
if p is negative, then the y-intercept will be positive A1
a downward-opening parabola with a positive y-intercept R1
eg sketch that must indicate $p<0$.
f has 2 roots A2
7. (a) valid approach involving addition or subtraction

M1 eg $u_{2}=\log _{c} p+d, u_{1}-u_{2}$
correct application of log law
eg $\quad \log _{c}(p q)=\log _{c} p+\log _{c} q, \log _{c}\left(\frac{p q}{p}\right)$
$d=\log _{c} q$
(b) METHOD 1 (finding u_{1} and d)
recognizing $\Sigma=S_{20}$ (seen anywhere)
(A1)
attempt to find u_{1} or d using $\log _{c} c^{k}=k$
eg $2 \log _{c} c, 3 \log _{c} c$, correct value of u_{1} or d
$u_{1}=2, d=3$ (seen anywhere)
correct working
eg $\quad S_{20}=\frac{20}{2}(2 \times 2+19 \times 3), S_{20}=\frac{20}{2}(2+59), 10(61)$
$\sum_{n=1}^{20} u_{n}=610$
A1
N2

METHOD 2 (expressing S in terms of c)
recognizing $\sum=S_{20}$ (seen anywhere)
correct expression for S in terms of c
eg $10\left(2 \log _{c} c^{2}+19 \log _{c} c^{3}\right)$
$\log _{c} c^{2}=2, \log _{c} c^{3}=3 \quad$ (seen anywhere)
correct working
eg $\quad S_{20}=\frac{20}{2}(2 \times 2+19 \times 3), S_{20}=\frac{20}{2}(2+59), 10(61)$
$\sum_{n=1}^{20} u_{n}=610$

Question 7 continued
METHOD 3 (expressing S in terms of c)
recognizing $\sum=S_{20}$ (seen anywhere)
correct expression for S in terms of c
eg $\quad 10\left(2 \log _{c} c^{2}+19 \log _{c} c^{3}\right)$
correct application of log law
eg $\quad 2 \log _{c} c^{2}=\log _{c} c^{4}, 19 \log _{c} c^{3}=\log _{c} c^{57}, 10\left(\log _{c}\left(c^{2}\right)^{2}+\log _{c}\left(c^{3}\right)^{19}\right)$, $10\left(\log _{c} c^{4}+\log _{c} c^{57}\right), 10\left(\log _{c} c^{61}\right)$
correct application of definition of \log
eg $\quad \log _{c} c^{61}=61, \log _{c} c^{4}=4, \log _{c} c^{57}=57$
correct working
eg $\quad S_{20}=\frac{20}{2}(4+57), 10(61)$
$\sum_{n=1}^{20} u_{n}=610$

Section B

8. (a)

A1A1A1
Note: Award A1 for each bold fraction.
(b) multiplying along correct branches
eg $\frac{3}{4} \times \frac{1}{8}$
$P($ leaves before 07:00 \cap late $)=\frac{3}{32}$
A1
(c) multiplying along other "late" branch
eg $\frac{1}{4} \times \frac{5}{8}$
adding probabilities of two mutually exclusive late paths
eg $\quad\left(\frac{3}{4} \times \frac{1}{8}\right)+\left(\frac{1}{4} \times \frac{5}{8}\right), \frac{3}{32}+\frac{5}{32}$
$\mathrm{P}(L)=\frac{8}{32}\left(=\frac{1}{4}\right)$

A1 N2
[3 marks]
continued...

Question 8 continued
(d) recognizing conditional probability (seen anywhere)
eg $\quad \mathrm{P}(A \mid B), \mathrm{P}$ (before 7|late)
correct substitution of their values into formula
eg $\frac{\frac{3}{32}}{\frac{1}{4}}$
$P($ left before 07:00| late $)=\frac{3}{8}$
A1
(e) valid approach
eg $\quad 1-\mathrm{P}($ not late twice $), \mathrm{P}($ late once $)+\mathrm{P}$ (late twice)
correct working
eg $1-\left(\frac{3}{4} \times \frac{3}{4}\right), 2 \times \frac{1}{4} \times \frac{3}{4}+\frac{1}{4} \times \frac{1}{4}$
$\frac{7}{16}$
A1
N2
[3 marks]
[Total: 14 marks]
9. (a) correct equation for volume
eg $\quad \pi r^{2} h=20 \pi$

$$
h=\frac{20}{r^{2}}
$$

(b) attempt to find formula for cost of parts
eg $10 \times$ two circles, $8 \times$ curved side
correct expression for cost of two circles in terms of r (seen anywhere)
eg $2 \pi r^{2} \times 10$
correct expression for cost of curved side (seen anywhere)
eg $\quad 2 \pi r \times h \times 8$
correct expression for cost of curved side in terms of r
eg $8 \times 2 \pi r \times \frac{20}{r^{2}}, \frac{320 \pi r}{r^{2}}$
$C=20 \pi r^{2}+\frac{320 \pi}{r}$
$A G$
NO
(c) recognize $C^{\prime}=0$ at minimum
eg $\quad C^{\prime}=0, \frac{\mathrm{~d} C}{\mathrm{~d} r}=0$
correct differentiation (may be seen in equation)
$C^{\prime}=40 \pi r-\frac{320 \pi}{r^{2}}$
A1A1
correct equation
eg $\quad 40 \pi r-\frac{320 \pi}{r^{2}}=0,40 \pi r=\frac{320 \pi}{r^{2}}$
correct working
eg $\quad 40 r^{3}=320, r^{3}=8$
$r=2(\mathrm{~m})$
attempt to substitute their value of r into C
eg $\quad 20 \pi \times 4+320 \times \frac{\pi}{2}$
correct working
eg $80 \pi+160 \pi$
240π (cents)
Note: Do not accept $753.6,753.98$ or 754 , even if 240π is seen.
10. (a) (i) recognize that $f^{\prime}(x)$ is the gradient of the tangent at x
eg $\quad f^{\prime}(x)=m$
$f^{\prime}(2)=3 \quad($ accept $m=3)$
A1
N2
(ii) recognize that $f(2)=y$ (2)
eg $\quad f(2)=3 \times 2+1$

$$
f(2)=7
$$

A1
 N2 [4 marks]

(b) recognize that the gradient of the graph of g is $g^{\prime}(x)$
choosing chain rule to find $g^{\prime}(x)$
eg $\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x}, u=x^{2}+1, u^{\prime}=2 x$
$g^{\prime}(x)=f^{\prime}\left(x^{2}+1\right) \times 2 x \quad$ A2
$g^{\prime}(1)=3 \times 2$
A1
$g^{\prime}(1)=6$
AG
(c) at $\mathrm{Q}, L_{1}=L_{2}$ (seen anywhere)
recognize that the gradient of L_{2} is $g^{\prime}(1)$ (seen anywhere)
eg $\quad m=6$
finding $g(1)$ (seen anywhere)
eg $\quad g(1)=f(2), g(1)=7$
attempt to substitute gradient and/or coordinates
into equation of a straight line
eg $\quad y-g(1)=6(x-1), y-1=g^{\prime}(1)(x-7), 7=6(1)+\mathrm{b}$
correct equation for L_{2}
eg $\quad y-7=6(x-1), y=6 x+1$
correct working to find Q
eg same y-intercept, $3 x=0$

$$
y=1
$$

A1
[7 marks]
[Total: 16 marks]

